Marc Rigter

Researcher in AI, machine learning, and robotics.

prof_pic.jpg

Welcome to my personal website!

I’m currently a researcher at Microsoft Research in the UK, working on foundation models for decision-making and embodied AI.

Previously, I was a postdoc with Prof. Ingmar Posner at the Applied AI Lab at the Oxford Robotics Institute (ORI) at the University of Oxford. I completed my PhD in machine learning and robotics at the GOALS Group at the ORI, advised by Prof. Nick Hawes and Dr. Bruno Lacerda. At Oxford, my research focused on generative world models, deep reinforcement learning, and planning under uncertainty.

   

Selected Publications

  1. ICLR
    Reward-free curricula for training robust world models
    Marc Rigter ,  Minqi Jiang ,  and  Ingmar Posner
    International Conference on Learning Representations, 2024
  2. TMLR
    World models via policy-guided trajectory diffusion
    Marc Rigter ,  Jun Yamada ,  and  Ingmar Posner
    Transactions on Machine Learning Research, 2024
  3. NeurIPS
    One risk to rule them all: A risk-sensitive perspective on model-based offline reinforcement learning
    Marc Rigter ,  Bruno Lacerda ,  and  Nick Hawes
    Advances in Neural Information Processing Systems, 2023
  4. NeurIPS
    RAMBO-RL: Robust adversarial model-based offline reinforcement learning
    Marc Rigter ,  Bruno Lacerda ,  and  Nick Hawes
    Advances in Neural Information Processing Systems, 2022
  5. AAAI
    Optimal admission control for multiclass queues with time-varying arrival rates via state abstraction
    Marc Rigter ,  Danial Dervovic ,  Parisa Hassanzadeh , and 3 more authors
    AAAI Conference on Artificial Intelligence, 2022
  6. ICAPS
    Planning for risk-aversion and expected value in MDPs
    Marc Rigter ,  Paul Duckworth ,  Bruno Lacerda , and 1 more author
    International Conference on Automated Planning and Scheduling, 2022
  7. NeurIPS
    Risk-averse Bayes-adaptive reinforcement learning
    Marc Rigter ,  Bruno Lacerda ,  and  Nick Hawes
    Advances in Neural Information Processing Systems, 2021
  8. AAAI
    Minimax regret optimisation for robust planning in uncertain Markov decision processes
    Marc Rigter ,  Bruno Lacerda ,  and  Nick Hawes
    AAAI Conference on Artificial Intelligence, 2021
  9. RAL
    A framework for learning from demonstration with minimal human effort
    Marc Rigter ,  Bruno Lacerda ,  and  Nick Hawes
    IEEE Robotics and Automation Letters, 2020
  10. IROS
    An autonomous quadrotor system for robust high-speed flight through cluttered environments without GPS
    Marc Rigter ,  Benjamin Morrell ,  Robert G Reid , and 5 more authors
    International Conference on Intelligent Robots and Systems, 2019